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We present a simple lattice model showing a glassy behavior. R matrix analysis predicts critical termination
of the supercooled fluid branch at density �g=0.1717. This prediction is confirmed by dynamical numerical
simulations, showing power-law divergences of relaxation time �1/2, as well as the four-susceptibility �4 peak’s
location and height exactly at the predicted density. The power-law divergence of �4 continues up to �4 as high
as 104. Finite-size scaling study reveals the divergence of the correlation length accompanying the transition.
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Understanding the transition of supercooled liquids into a
glass is considered by many to be one of the outstanding
challenges of condensed-matter physics. Many liquids, when
cooled fast enough to avoid crystallization, appear to freeze
into solidlike structures devoid of crystalline order �1–3�.
The time scales for structural relaxation in such metastable
supercooled regimes increase dramatically as the temperature
is lowered. For strong glass formers the relaxation times
grow exponentially as �=�0 exp�A /T�. Fragile glass formers
exhibit relaxation times that increase more rapidly than the
Arrhenius and are often fitted by the Vogel-Tammann-
Fulcher functional form �=�0 exp�A / �T−T0��, with a charac-
teristic temperature T0 �4�.

The glass transition temperature is experimentally defined
as the temperature at which dynamic relaxation times exceed
those accessible in typical experiments, e.g., when viscosity
hits 1013 P. During the past century, much interest has been
focused on understanding the nature of this transition.
Clearly, the glass transition temperature, defined by some
viscosity cutoff value, is just an arbitrary reference point
along the gradual increase in relaxation times with decreas-
ing temperature. The question of whether there is some
deeper physical meaning to the glass transition is still de-
bated �1�. Is the fast increase in relaxation times merely a
sharp crossover in the dynamics, or could it be a manifesta-
tion of a true thermodynamic transition? �Obviously, when
considering a glass transition in a system exhibiting a solid
phase, such as real glass formers, the notion of a thermody-
namic glass transition must be interpreted in the sense of a
restricted part of phase space. For simplicity, we ignore this
distinction in the following.� Many theoretical studies have
been applied to support either one of the competing views.
For example, a popular microscopic approach is the mode-
coupling theory �see �5,6� for reviews�. It predicts a dynamic
glass transition, characterized by ergodicity breaking, while
thermodynamic �equilibrium� quantities such as the isother-
mal compressibility do not become singular. In contrast, the
replica approach �7� predicts a structural glass transition with
a pure thermodynamic origin, characterized by a vanishing
configurational entropy. Other phenomenological theories,
such as the random first-order transition �8,9� and the
potential-energy landscape �10� to name only two, also pre-
dict a thermodynamic phase transition.

Recently, the R matrix �11,12� approach for the analysis
of the Mayer cluster integral expansion has been applied to
the hard-sphere fluid �13,14�. It provides the density as a

function of the activity z �z=e��, where � is the chemical
potential and � is the inverse temperature� and predicts a
critical termination of the supercooled fluid, with a power-
law divergence of the isothermal compressibility. The pack-
ing fraction at which this divergence is predicted to happen is
0.556�5�, which is surprisingly close to the experimentally
reported glass transition packing fraction of 0.56�1�. This
result, therefore, strongly supports the existence of a thermo-
dynamic glass transition for hard spheres underlying the �ex-
perimentally and numerically observed� dynamical arrest. It
is desirable to have numerical measurements of the super-
cooled hard-sphere equation of state near the transition in
order to test the validity of the R matrix approach. However,
these simulations are extremely challenging. Accordingly,
contradicting results have been reported regarding the exis-
tence of singularities in thermodynamic quantities for this
system �15,16�.

The limits of numerical methods often hamper the study
of glass transition. Excluding the nonphysical kinetically
constrained models, most models studied are either complex
�binary mixtures� or hard to simulate �hard spheres�. They
are therefore limited in system size and simulation times. For
example, a recent study of Lennard-Jones binary mixture
�17� reports that enlarging the system to include 27 000 par-
ticles improves the quality of the extrapolation of
k-dependent quantities to zero wave vector. Moreover, simu-
lations are generally limited to time scales roughly ten orders
of magnitude shorter than those near the laboratory glass
transition temperature Tg and therefore to the initial stages of
the glass formation process �18�. These numerical limitations
might be lifted by introducing a simpler model system that
still captures the essence of glassy behavior. Keeping that in
mind we set to explore the glass transition is the N3 lattice
model.

The N3 model is a simple two-dimensional model on a
square lattice. Particles interact only through hard-core ex-
clusion up to the third-nearest neighbor. The model is known
to undergo a first-order solidification transition �19–21�,
where density jumps from � f �0.161 to �s�0.191 �21� �the
closest packing density is 0.2�. Like the hard-sphere case, R
matrix analysis predicts a critical termination of the super-
cooled fluid where the isothermal compressibility power law
diverges. The critical density is found to be �t�0.1717. In
concordance with hard-sphere results �14�, we hypothesize
that this point is indeed the thermodynamic glass transition
for this system. We then study the dynamics of the model by
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extensive Monte Carlo �MC� simulations and find that the
dynamical quantities diverge exactly at the density predicted.
We therefore conclude that the dynamical arrest in the N3
model results from a singularity of the free energy, as pre-
dicted by the R matrix. These results support the view of a
thermodynamic �also known as ideal� glass transition in this
system. Furthermore, we propose the N3 system as a simple
and convenient model system for future studies of glassiness.

In order to construct the R matrix for the N3 model, we
extended the number of known Mayer cluster integrals to 23,
using the transfer-matrix �TM� method. We have employed a
diagonal-to-diagonal symmetry-reduced TM, with strip a
width as large as M =24 �3 874 112 symmetry-reduced
classes�. The cluster integrals provide the exact 11�11 lead-
ing R submatrix presented in Table I �for details on R matrix
construction, see �12��. The matrix elements quickly con-
verge to a well-defined asymptotic form which we use to
extrapolate additional matrix elements and obtain the equa-
tion of state �Fig. 1�. Remarkably, the results, based only on
low-density expansion, are in an excellent agreement with
both MC data and exact TM calculations. The physical sin-
gularity is found at zt�66.67, which is well above the first-
order transition �zc�39.496�, with a critical density �t
=0.1717. Furthermore, the R matrix provides an exact for-
mula for the critical exponent �� associated with the termi-
nation point of the fluid �12,14�: near this singularity, the
density is given by

�t − ��z� � �zt − z���, �1�

and the critical exponent is found to be ��=0.39�2�.
We hypothesize that this thermodynamic criticality under-

lies an ideal glass transition for the N3 model and set out to
study the model dynamically looking for signatures of this
glass transition. We conducted canonical �constant density�
MC studies of the model in the following way: the starting
configuration was generated under extreme cooling condi-
tions �or, equivalently, infinite chemical potential�. Particles
were allowed to diffuse when no insertion was available.
This process is known to terminate at the random closest
packing �RCP� state with a density of about 86% of the
closest packing density �22�. Here, we stop the cooling at the
desired density �below RCP�, and let the system relax diffu-
sionally. Given enough time, the global equilibrium phase-
separation state is reached. On shorter time scale the system
relaxes to a disordered phase. We first measure the density-
density correlation

C�t� =
1

1 − �
� 1

N
�

V

	n�r,0�n�r,t�
dr − �� �2�

along the relaxation process �n�r , t�=1 if a particle exists at
site r at time t and zero, otherwise�. Figure 2 shows the
typical glassy dynamics picture: a plateau �� regime� fol-
lowed by a stretched-exponential decay �	 regime�. Due to

TABLE I. Mayer cluster coefficients nbn and R matrix diagonal �Bn� and off-diagonal �An� elements for
the N3 model.

n nbn Bn An

1 1 13 6

2 −13 10.777777778 5.4955088285

3 205 10.777970817 5.4246225024

4 −3521 10.762751563 5.4025047989

5 63466 10.755266974 5.3922495398

6 −1180075 10.751491280 5.3866896951

7 22423304 10.749147764 5.3834227892

8 −432957233 10.747459452 5.3814030748

9 8463267016 10.746108741 5.3801242739

10 −167059758328 10.744940022 5.3793147595

11 3323928207997 10.743879570 5.3788131550

12 −66571342665659

13 1340690959181588

14 −27128411793067290

15 551181809202093940

16 −11238651060745319617

17 229877749269899350973

18 −4715081436294109369498

19 96953111901056596856377

20 −1998044077291458477558756

21 41259643403438186795821307

22 −853576114433438941428139775

23 17688270167244330924258385729
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the discrete nature of the diffusion process in this model, the
� relaxation stage is very short �of order one simulation time
unit� and is not presented. The relaxation time �1/2, defined as
the time at which C�t�=1 /2, power law diverges as the den-
sity approaches �g=0.1717,

�1/2��� � ��g − ��−�, �3�

with �=0.83 �Fig. 2, inset�. In addition, we measure the
four-susceptibility �4, �23,24�

�4�t� = N�	C�t�2
 − 	C�t�
2� . �4�

Again, a typical glassy behavior is observed �Fig. 3�—�4
peaks at the 	 phase, and the peak grows in height and shifts
to higher times as the density increases. Peak heights ��max�
and locations ��4� also power law diverge as �g is ap-
proached �Fig. 3, inset�. A transition to activated dynamics

occurring close to the glass transition could be manifested by
the onset of a slower logarithmic growth of the �4 peak �25�.
We do not observe any such transition for �4 values up to
104.

The above MC data confirm the R matrix prediction to an
excellent agreement. Given that this prediction is based
solely on low-density series expansion, it is remarkable that
it captured quantitatively the behavior at the deep super-
cooled regime. This attests for the validity of the R matrix
approach and its prediction of a thermodynamic criticality in
the equation of state of the N3 supercooled fluid, and it pro-
vides a strong evidence that the glass transition in this model
is indeed a thermodynamic ideal one.

The growing �4 peak is indicative of growing cooperative
correlations in the relaxation process �26�. It measures the
volume upon which diffusional moves are correlated �27�. In
concordance, growing correlation lengths are seen also by
the emergence of finite-size effects in the density-density
correlations as shown in Fig. 4. These finite-size effects, re-
cently highlighted by Karmakar et al. �28�, underscore the
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FIG. 1. �Color online� N3 equation of state: R matrix prediction,
based on the first 23 Mayer cluster integrals �dashed line�, Monte
Carlo calculation on a 1000�1000 lattice �solid line�, and exact
transfer-matrix calculation for a semi-infinite 25 site wide strip
�symbols�. The latter two methods provide equilibrium results,
while the R matrix extrapolates to the supercooled fluid branch. The
agreement of the R matrix results with the numerical methods is
excellent throughout the fluid regime. Inset shows the diagonal �Bn�
and off-diagonal �An� R matrix elements, together with the fitted
asymptotic form.
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FIG. 2. �Color online� Density-density autocorrelation �2�,
showing the typical glassy relaxation picture, on a logarithmic time
scale. The inset shows the relaxation time �1/2 vs density �symbols�,
which is well fitted by a power law �3� diverging at �g.
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FIG. 3. �Color online� �4 as a function of time showing the
familiar peaks. Peaks’ heights �max and locations �4 power law di-
verge as density approaches �g �inset� with critical exponents of
2.85 and 0.93, respectively.

10
2

10
3

Lattice Linear Size

10
1

10
2

10
3

10
4

χ m
ax

ρ=0.17
ρ=0.171
ρ=0.1713
ρ=0.1715

FIG. 4. �Color online� Finite-size analysis: �4 peak height as a
function of lattice linear size, for various densities. As the density
approaches �g, larger lattices are needed for converged results, at-
testing for a diverging length scale. For lattices smaller than the
correlation length, �max is expected to grow like system’s size. A
straight line with a slope of 2 is presented, to guide the eye.
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importance of using large systems for MC studies of glassi-
ness, which is most difficult for popular models currently
used.

Unlike the hard-sphere case, the termination density �g
predicted by the R matrix and the dynamical arrest occur in
close proximity to the random closest packing density �rcp
�22�. Therefore, the region beyond the transition is inacces-
sible in this model. It is important to note that the co-
occurrence of the two phenomena is not a universal trait of
the R matrix analysis. For example, in the hard-sphere model
the R matrix prediction for the ideal glass density is �t
=0.556�5�, which is much lower than �rcp=0.64. Hopefully,
future work will find a model that is as simple as the N3
model but also allows access to densities beyond �t. This
could be achieved by studying the soft-core N3 model or
other hard-core lattice models.

We stress that the simplicity of the N3 model is important
not only in order to allow for analytical treatment, but to
facilitate numerical studies of large systems, much larger
than those typically used in glass studies. This is especially

important when one approaches the glass transition, where
long-range cooperative relaxation processes emerge, mani-
fested by significant finite-size dependence. For example, at
density �=0.1715, even a 1000�1000 lattice �171 500 par-
ticles; linear size of �447 particle diameters, much larger
than typical three-dimensional studies� is not large enough to
converge to bulk values as seen in Fig. 4. The need for a
simple model then is not a matter of comfort, but a real
necessity. We therefore propose that the N3 model, or similar
models, could serve in future studies of glass formers being
simple to handle, yet capturing the essence of glassiness.

In conclusion, we have applied the R matrix approach to
the N3 model and found that its supercooled equation of state
becomes singular at density �g=0.1717, where the isother-
mal compressibility power law diverges. MC simulations
confirm that the model shows the characteristics of a fragile
glass former undergoing a glass transition at the predicted �g.
It thus follows that in this model the phenomenological glass
transition, observed as a fragile glass dynamical arrest at �g,
is accompanied by a thermodynamic criticality.
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